The Toxicological Effect on the Liver Function caused by Fecal Coliform Bacteria | Author : Zaki Al-Hasawi1, Hassan Al-Harbi2, Reem Al-Hasawi3 and Esam Al-Wesabi1,4* | Abstract | Full Text | Abstract :This study was carried out on 80 male Swiss Webster Albino mice (MFI Strain) treated for 90 days with drinking well water contaminated with fecal coliform bacteria at four doses, control (0 colony/L), low dose (490 colonies/100 L), medium dose (1100 colonies/100 L) and high dose (2400 colonies/100 L) to test the bacterial effect on the liver functions. The animal blood plasma was tested for determination of the concentrations of the substances total proteins, glucose, creatine, bilirubin, cholesterol, triacylglycerol, high density lipoprotein, low density lipoprotein and the enzymes aspirate aminotransferase, alanine aminotransferase and alkaline phosphatase. The results indicated significant increase in the concentrations of the total proteins, lipoprotein, cholesterol, creatine and bilirubin and significant decrease in the concentration of the enzymes alanine aminotransferase, aspirate aminotransferase, alkaline phosphatase and in high density lipoprotein, triacylglycerol in the animal’s blood. The functions of the liver were affected by the toxicity resulting from the fecal coliform bacteria concentrations in the well drinking water particularly at the medium and high doses. |
| Protease, Amylase and Lactase Enzyme Stability in Gastroval® Capsules after Incubation at Acidic pH and Elevated Temperature | Author : Edvinas Paliulis, Vaida Paketuryte and Daumantas Matulis* | Abstract | Full Text | Abstract :The stability of plant-derived enzymes present in digestion-alleviating food supplement capsules Gastroval® was studied by determining the survival of enzymatic activity of proteases, a-amylases, and lactases (ß-galactosidase) after an exposure to acidic pH and elevated temperature. Most of the enzymatic activity after the prolonged (2 h) exposure to acidic conditions (pH 2.0) and elevated temperature (50°C) remained unchanged or slightly reduced, thus indicating that the enzymes would pass the stomach without losing their entire enzymatic activity and efficiently alleviate food digestion in the intestine. |
| Modulation of ECG, Myocardial Oxidative Stress Markers and Connexion 43 Expression by Ascorbic Acid and Ferulic Acid in Isoproterenol-Induced Myocardial Infarction in Rats | Author : Emile F Metias1, Nisreen M Aboelmaaty1, Abdelaziz M Hussein1*, Eman W Abdallah1 and Azza Abdelaziz2 | Abstract | Full Text | Abstract :Objective: To assess the effects of ferulic acid (FeA) and ascorbic acid (AS) and combination of both on ECG variables, serum cardiac enzymes (AST, LDH, CK-MB), myocardial oxidative stress markers (MDA, SOD and GSH) and connexin 43 (Cx43) expressions in isoproterenol (ISO)-induced myocardial infarction. Methods: 40 male rats were equally allocated into 5 groups, 1) Control group, 2) ISO-induced MI group (rats received ISO 150 mg/Kg ip for 2 consecutive days at 24 h intervals), 3) FeA group (rats received ISO+FeA at 20 mg/kg/day po for 6 days), 4) AS group (rats received ISO+AS at 80 mg/kg/day po for 6 days) and 5) Combined group (rats received ISO+AS+FeA in the same previous doses). Results: The ISO group showed significant increase in serum cardiac enzymes (AST, CK-MB, and LDH), myocardial MDA and myocardial histopathological damage score with significant decrease in myocardial antioxidants (SOD and GSH) and Cx43expression compared to the control group (p<0.05). ECG traces of rats of ISO-induced MI, showed ST segment elevation, prolonged QT interval, shortened RR interval and increased heart rate. A combination of FeA and AS caused more significant improvement in the studied parameters than did each agent alone. ECG changes were improved significantly in the combined treatment group only. Conclusion: A combination of FeA and AS seems to offer a greater protective effect against ISO-induced myocardial infarction. This might be due to the synergism between their antioxidant properties as well as their effects on the density and location of Cx43 in myocardium. |
| Alleviation of the Effects of Copper Chloride on Vigna unguiculata (L) using Ulva lactuca | Author : Duraipandian M, Sevugaperumal R, Ramasubramanian V and Ganesh D | Abstract | Full Text | Abstract :Our environment is polluted from heavy metal using industries. It is due to anthropogenic activities. The heavy metals are in excess is toxic to animals, plants and microorganisms. The excess of copper can affect the entire plant systems. Copper is one of the major source pollutants in ocean and terrestrial. To remove the excess copper pollution by biosorption is an easiest technique by using Ulva lactuca. In this present study, Cow pea Vigna unguiculata (L) seedlings were treated with 6 mM copper chloride, water control and Ulva lactuca bio sorbent (2 g/L, 4 g/L, 6 g/L and 8 g/L), its influence on the biochemical, enzymatic and morphometric characteristics were studied. The morphometric parameters such as fresh weight, leaf area, shoot length, dry weight and root length is increased than that of 6 mM treated control. The pigments such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoids are steadily increased and anthocyanin content was decreased than the control 6 mM copper chloride. Biochemical characters such as protein and soluble sugar were increased with 6 mM of copper chloride. On the opposing the contents of proline, free amino acid, total phenol and leaf nitrate were decreased in the 6 mM of copper chloride. The enzyme activities such as peroxidase, catalase are decreased and the nitrate reductase is increased. Atomic Absorption Spectroscopy (AAS) was employed to conclude the copper in the treated and control plants and 6 mM Cu2+ reveals that vigorously affected the Vigna unguiculata (L) (cow pea) plants and The green algae Ulva lactuca is effectively biosorbed the copper heavy metal and get rid from soil pollution and improve crop yield. |
|
|